标签:人工智能

Python

【待更新】第五章 管理机器学习和深度学习的能力

【待更新】第五章 管理机器学习和深度学习的能力
本文为Python之 AI人工智能初学者指南第五章。技术准备通过TensorFlow构建一个FNN架构使用数据流图作为架构路线图来编写代码数据流绘图转换为源码输入数据层隐藏层输出层代价或损失函数梯度下降和反向传播运行会话检查线性可分割性使用TensorBoard来设计你机器学习和深度学习解决方案的架构设计数据流图的架构在Tenso……继续阅读 »

Alan 6年前 (2019-05-02) 2680浏览 0评论0个赞

Python

【待更新】第四章 成为一个打破惯例的创新者

【待更新】第四章 成为一个打破惯例的创新者
本文为Python之 AI人工智能初学者指南第四章。技术准备原始感知机的XOR限制XOR和线性可分割模型线性可分割模型线性模型的XOR限制,如原始感知机从零构建前馈神经网络第一步 – 定义前馈神经网络第二步 – 两个子项如何日常解决异或问题在Python中通过FNN和反向传播算法实现传统异或方案代价函数和梯度下降的……继续阅读 »

Alan 6年前 (2019-05-02) 3233浏览 0评论0个赞

Python

【更新中】第三章 将机器思维应用到人类问题上

【更新中】第三章 将机器思维应用到人类问题上
本文为Python之 AI人工智能初学者指南第三章。在第一章中,MDP强化学习项目产生了一个结果作为输出矩阵,在第二章 像机器那样思考中,麦卡洛克-皮特斯神经元系统产生了一个回报矩阵输入。但是,这两个函数的中间或最终结果需要不断地度量。好的度量解决了给定问题的重要部分,因为决策依赖于它们。可靠的决策由可靠的运算制定。本章的目的是介绍度量方法。人类智能的主……继续阅读 »

Alan 6年前 (2019-05-02) 2960浏览 0评论0个赞

Python

第二章 像机器那样思考

第二章 像机器那样思考
本文为Python之 AI人工智能初学者指南第二章。第一章通过DQN所使用的Q动作值函数来讲解了强化学习算法。其中代理是一个驱动。你已然处于AI的DeepMind方法的核心。DeepMind无疑是应用人工智能的全球领先者。科学、数学和应用研究驱动着它的策略。DeepMind成立于2010年,并于2014年被Google收购,现是Google整合后的母公……继续阅读 »

Alan 6年前 (2019-03-31) 3587浏览 0评论0个赞

Python

第一章 成为一个随机应变的思考者

第一章 成为一个随机应变的思考者
本文为Python之 AI人工智能初学者指南第一章。2017年5月,Google 发布了AutoML,一个自动化机器学习系统,无需人类工程师的协助即可创建人工智能解决方案。IBM云和亚马逊云服务(AWS)提供了无需AI开发人员的机器学习方案。GitHub和其它云平台提供了几千个机器学习项目,降低了对于随身有AI专家的需求。这些云平台将慢慢地也必然会减少对于……继续阅读 »

Alan 6年前 (2019-03-29) 3848浏览 0评论2个赞